CHARACTERIZATION OF POLYNOMIALS

WOLFGANG VOLK
Nymphenburger Str. 11, D-10825 Berlin, GERMANY
URL: http://user.berlin.de/ wolfgang.volk
E-Mail: wolfgang.volk@berlin.de

The aim of this short paper is to prove a theorem on polynomials. It yields a characterization for this
class of functions. The proposition (cf. theorem 0.2 below) is stated in [3] in form of a problem to be solved
by the reader. In contrast to the cited literature the theorem can be proven exclusively with standard tools
of analysis. The final part of this paper is concerned with relaxing the restrictions with respect to the domain
still assuring that the proposition remains true. It should be mentioned that in accordance with ISO 31-11
(cf. also [2] and the draft proposal of DIN 1302) N =4er {0, 1,2, ...} and N* =4 {1,2,...}. The inclusion
signs are also used as recommended by ISO 31-11, which means “C” and “D” for proper inclusion and “C”
and “D” if equality may be attained.

DEFINITION 0.1: Let I C R be a connected set possessing more than one point, which means that I is
an interval with no regard if it is bounded, open, closed or not. A function f : I — R is called a (real)

polynomial if there exists n € N* and real numbers (ag, ay, ..., an_1), such that for any = € I the identity
n—1

(0.1) fl@)=> ai-a'
i=0

holds. n is called the order and n — 1 is called the degree of the polynomial f.
Throughout this paper differentiation is used in operator notation.

DEeFINITION 0.2: Let I be an open not necessarily bounded interval in the sense of definition 0.1. By the
operator

(0.2) D:CY(I) — C(I)
f—r

also higher derivatives may be expressed in form of D" f, for n € N. It emphasizes the fact that derivatives
of a function are functions too.

The following theorem is well known. It provides a characterization of polynomials. (For the definition
of the space L7[a, b] the reader is referred to [4, p. 14], but in this context it may be replaced by C*°(a,b).)

THEOREM 0.3: Leta, b € R with a < b. Then f : (a,b) — R is a polynomial if and only if there exists
n € N* such that f € L}[a,b] and for all x € (a,b) the identity D" f(z) = 0 holds, which means that the n-th
derivative of f vanishes identically.

Proof: “=” Let f be a polynomial of order m and z € (a,b) be arbitrarily given. Differentiation
of both sides of (0.1) yields D™~1 f(z) = (m — 1)! - a1, which is a constant. Hence D™f = 0, which
means that the choice n = m yields the desired result. “<” By Taylor’s theorem [4, theorem 2.1] f(z) =
E?:_()l Dif(zq) - (z— o)t /i! +f;0(z —t)"~1/(n—1)!- D" f(t) dt, for any zo,z € (a,b). The last term vanishes
identically. Now choose

n—1

0.3) o = Z (—20)'~7 - Di f(xo) ,

gt (=)t

for j =0(1)n — 1. [
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The following theorem yields another characterization which looks to be much more weaker than the
preceding one. Please, take into account that the interval under consideration is now open and bounded. But
before this theorem will be stated, some of the items and abbreviations used subsequently will be defined first.
Moreover some helpful results will be provided in advance in order to keep the proof itself well-structured.

CONVENTION 0.4: Let I be an interval as in definition 0.1 and f : I — R. Then let

(1) Z2(f) =aet {z € I|f(z) =0} denote the set of all zeroes of the function f,

(i1) Z(f) =aqet {JI € I|f(z) = 0 and there exists ¢ > 0 such that Z(f)N(z —¢,z +¢) = {a?}} denote the set
of all isolated zeroes of the function f,

(iil) A(f) =aer {2 € I| for all £ > 0 there exists y € Z(f) \ {«} with |z — y| < ¢} denote the set of accumu-
lation of zeroes of the function f.

REMARK 0.5: From the definition the relation A(f)NZ(f) = 0 and Z(f) C Z(f)U.A(f) follows immediately.

LEMMA 0.6: For any f: I — R the set Z(f) is denumerable.

Proof: Consider the ordered set Z(f). Any two adjacent elements (points) have a strictly positive
distance, which means that there is a rational number in between. Hence there are at most as many isolated
zeroes as rational numbers (increased by 1). []

CoROLLARY 0.7: Let I be an open not necessarily bounded interval and f € C*(I). Then |,y Z(D™f) is
denumerable.

Proof: Clear due to [1, p. 9]. []

LEMMA 0.8: Let f € C(I). Then
() AHC2()
(i) A()UZ(f) = Z(f)
Proof: (i) Clear, due to the fact that Z(f) is closed as far f is continuous. (ii) “C” Clear due to (i) and
the definition of Z(f). “D” Let z € Z(f). Then it is an isolated zero or not. If not then z € A(f). LI

LEMMA 0.9: Let I be an open not necessarily bounded interval and for an n € N* let f € C(I). Then the
relation A(D"=1f) C A(D"f) holds.

Proof: Let z € A(D"~1f). Then there is a sequence (z;)men in Z(D"~1f)\ {z} converging to z.
Without loss of generality one may assume that 2, # z,—1 for all m € N* Due to Rolle’s theorem [4,
theorem 2.19] there is for any m € N a point y,, in the open interval built from both points z,, and
Zmy1 With the property D" f(ym,) = 0. Obviously (Ym)men also converges to z, which exactly means that
z € AD™f). L
THEOREM 0.10: Leta, b € R with a < b. Then f : (a,b) — R is a polynomial if and only if f € C*(a,b)
and for any x € (a,b) there exists n € N such that D" f(z) = 0.

Proof: “=7 clear by theorem 0.3. “<” Assume that f is not a polynomial but that for any z there exists
n such that D" f(z) = 0 still hoping that this leads to a contradiction. From lemma 0.6 the existence of
no € N follows, such that A(D"° f) # . This means that there is yo € A(D"° f). Since f is not a polynomial
there exists z € (a,b) with D™ f(z) # 0 (theorem 0.3). The continuity of f assures that there exist
a<r<z<s<bwith Z(D" f)n(r,s) = 0. Without loss of generality assume that yo < r < s < b (instead
of a <r < s<yp). With the same argument with respect to (7, s) instead of (a, b) there exists n; > ng and
y1 € (r, s) such that y; € A(D™ f). The interesting thing is that there exists ry and r; satisfying yo < r <
ro < 71 <y and (rg, r1)NA(D™ f) = 0. To prove this, assume that there is no such an interval (79, r1). Then
(Yo, y1)NA(D™ f) must be dense in (yo, y1). Since A(D" f) is closed by lemma 0.8(i) and its definition there
must be (yo,y1) C A(D"* f). Consequently by means of Taylor’s theorem [4, theorem 2.1] for any y € (v, y1)
there is D" f(y) = Z?:lgol Dif(yo)/(i—mno)! - (y — yo)i " + fyyo DM f(t)/(n1 —ng)! - (y — )" "o dt = 0
due to lemma 0.9, which is a contradiction to the fact that the interval (r,s) contains no zeroes of D" f.
Again with the same argument there exists ny > n; and y2 € (rg,r1) with y2 € A(D"2f) as well as
Po = 70,0,701 < Y2 < r1,0 < 711 = 71 such that ((7’0,0, ro1)U(rio < 7’1’1)) NA(D" f) = 0. Continuing this
approach leads to a nested system of sets built from disjoint intervals. For any n and any (i1, .. .,%,) € {0, 1}"

define s;,, . ;. = limpyoo 7y, . ;.. Please have in mind that all these sequences are bounded (by yo

inyin,..8

m times

from below and by y; from above) and monotonely (increasing if ¢, = 0 and decreasing if i, = 1) and hence
are convergent. A set similar to Cantor’s set [1] is formed by the system of intervals [s;, ... i, .0, Si1,... in_1,1)-
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This set needs not to have the meassure 0, but it is not denumerable and contains only a denumerable subset
of elements, namely the endpoints of the subintervals, which may be in (J,x A(D"f). Moreover this set
contains at most denumarably many isolated zeroes of the function f and its derivatives due to corollary
0.7. Hence it follows that this set contains elements for which neither f nor one of its derivatives vanishes.
But this statement forms the contradiction to the assumptions. [ |

The remainder of this paper is concerned with relaxation the restrictions with respect to the domain
of the function f in the preceding theorem. First it is shown that the boundedness of the domain is not
necessary.

COROLLARY 0.11: Let I C IR be an open unbounded interval, which means that I is of one the forms (a, 00),
(00,b) or R with real numbers a and b. Then the proposition of theorem 0.10 remains true if (a,b) is replaced
by I.

Proof: In the proof of theorem 0.10 it has nowhere been used that the domain of f is bounded. The
existence of yg, z, r and s follows anyway. [ ]

The necessity to consider nonopen interval separately follows from the traditional definition of differ-
entiability, which means that smoothness is only well-defined for interior points of the domain. But if the
function under consideration is in addition assumed to be continuous theorem 0.10 provides sufficient and
necessary conditions for polynomials, which must only hold in the interior of the domain.

COROLLARY 0.12: Let I C R be an arbitrarily given interval and f € C(I). Then the proposition of theorem
0.10 remains true for f|ro, where I° denotes the biggest open subinterval of I, if (a,b) is replaced by I°.
Proof: “=” Theorem 0.10 yields a polynomial f with respect to I° let’s say with order n. Now

let y € I'\ I° and (z,,) be a sequence in I° converging to y. From lim,,_ ?:_01 a; -z, = Z?:_OI a; -
limMpm—oo Zm )i = 577 a; -y there is only one way to extend f|7o to the whole interval I. “<” Clear, since
1=0

polynomials are continuous. [ |
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